孩子出生时,你是不是抹杀了他/她的第一次干细胞移植?晚断脐,

  • A+
所属分类:医疗资讯

孩子出生时,你是不是抹杀了他/她的第一次干细胞移植?晚断脐, 。
印度的natco马法兰盘Melphalan摘 要:。孩子出生时,你是不是抹杀了他/她的第一次干细胞移植?晚断脐,文章内容《脐带血保存还是不保存?看完这篇文章你就不纠结了》发布以后,有阅读者私底下告知我讲目前出了一种新的方式,称为“晚断脐”。而她给她的小孩选用的也是这个方法。秉着对宝宝承担责任的心态,我查询了我国外的有关参考文献,因此有此文章内容。这儿或是先得出结果,要想弄搞清楚前因后果的父母可以继续阅读。结果如下所示: 根据现在的参考文献,大家提议在全部身心健康的宝宝生产过程中,应明显考虑到晚断脐,且在早产儿宝宝生产过程中,无别的应急严重危害早产婴儿性命的情形下,实际操作晚断脐。

环境

近几十年来,断脐的时间点一直是医生和护士争执的聚焦点[1,2]。尽管沒有确定的直接证据都没有确定的优势,可是早断脐一直以来全是实际孕妇分娩中最常见的方法[3,4]。 在近期的Cochrane的科学研究[5]中,早断脐被理解为出世到1分鐘这一区域内。(我国的参考文献一般全是界定在5-10秒的范畴内)。而晚断脐的概念为超过1分鐘,直至胎儿脐带终止起伏[6]。一切正常的断脐時间一般在30秒到1分鐘中间。殊不知,针对断脐時间有比较多的异议,这儿大伙儿了解一下就行,不用细究。在当代医科学研究中,早断脐是因为推动宝宝恢复和平稳,与此同时也是由于担忧晚断脐很有可能造成不良危害[7]。除此之外,在大力发展储存脐带血干细胞的这一阶段,早断脐是因为收集很多的血夜,由于脐带血移植的完成与移殖体细胞的数目相关。殊不知,很多的医学和元分析科学研究(学者对某一话题的任何有关分析結果,开展定量分析的融合)说明晚断脐可以提升宝宝血流量并事先预防缺铁性贫血,而沒有比较严重药不良反应[8-10]。下面咱们就出世时脐带血干细胞里边的干细胞的存有这一方面探讨晚断脐的必要性。

宝宝初期的造血机能

为了更好地弄搞清楚断脐時间与干细胞美容中间的关联,最先必须掌握人们围生期初期造血功能的状况(围生期:就是指孕期28 周全生完孩子一周这一孕妇分娩前前后后的关键阶段)。 在胎儿产生的2周上下,胎宝宝造血功能逐渐于卵黄囊中的栽培基质体细胞。 6周时,从卵黄囊转移的多能干细胞在6周时产生肝造血功能,但卵黄囊造血功能不断到10周。 6-20周,肝部是胎宝宝血液成分的具体来源于。 20周,轴骨中的髓质位置逐渐造血功能,多能干细胞从肝部转移。伴随着脊髓(BM)造血功能的逐渐胎宝宝肝部中的造血功能慢慢缓减,但肝部造血功能依然不断到胎宝宝出世[11]。 胎宝宝被孕妇分娩后,其造血机能将从肝部彻底迁移蔓延到脊髓。因而,一直到出世,胎宝宝的多能干细胞持续向脊髓转移[12],这也说明这时多能干细胞应当存有于包含脐带血以内的胎宝宝循环系统中。因为胚胎干细胞在胎宝宝循环系统中的明显存有,断胎儿脐带时时刻刻的现象十分非常值得引起起人们的留意。

早断脐与晚断脐

早断脐与晚断脐对比,晚断脐可以让胚胎中的血传至宝宝身体,这类胚胎静脉注射可以提升宝宝的静脉血量,数最多可以达到30ml/kg休重.这在于下面一些基本要素:断脐時间、第一次吸气和伤心的時间、作用力的危害、孕妇分娩方式及其第二产程(又叫胎宝宝娩出期,就是指从宫颈口开全到宝宝娩出)的宫缩抗压强度[13—17]。 血流量的提升针对早产婴儿特别是在关键,由于它们比足月儿有着越来越少的胎宝宝-胚胎血流量,假如马上断脐,则会提升低注浆的风险(低注浆是偏向人的大脑或手臂等人体器官或四肢血供不够)[18,19]。低注浆很有可能会毁坏脑血液的稳定性及其事先预防工作压力-处于被动循环系统所必要的自动调节作用[20]。我国外的专家教授做了许多试验剖析较为早断脐和晚断脐中间的差别。在早产婴儿中,延迟时间最少30秒的断脐,可以降低脑颅毛细血管破裂、迟发性败血病和缺铁性贫血的发病率,而且能降低静脉注射的必须[6,21]。与怀孕30-36周的新生婴儿早断脐对比,延迟时间1分鐘的晚断脐可以使红细胞体积/品质和每星期红细胞压积明显升高(红细胞压积是古称,目前称红细胞比容(HCT)。)[22]。除此之外,晚断脐可以改进早产婴儿在性命前24钟头内的脑氧合情况(脑氧合情况是反映脑部血流动力学,脑氧传送和脑氧新陈代谢的综合性指标值)[23]。 近期的一项科学研究下结论,晚断脐是安全可靠的,而且在生完孩子融入初期不容易严重危害早产婴儿[24]。针对足月宝宝,将断脐延迟时间最少2分鐘,可以降低婴儿期缺铁性贫血的发病率,事先预防出世后,前3个月的缺铁性贫血,并不断6个月丰富多彩铁存储和铁蛋白水准[25]。 这相对于那种在新生儿期和儿童期缺铁性贫血十分广泛的发达国家的病患者特别是在关键[26-31]。与大部分医师的想法反过来,晚断脐的一些潜在性药不良反应:呼吸困难或咕嘟声、高总胆红素尿症(一般觉得会引起新生儿黄疸)、红细胞增多症和低粘度的风险,这种药不良反应在临床医学上并不明显,而且是生理学赔偿制度的一部分[25—31]。晚断脐的另一个潜在性优势是保证宝宝在宝宝出生时可以传输到必需的凝血因子的详细填补,由于生孩子的所有流程早已开始了妈妈和孩子的凝血功能(凝血机制,就是指血夜由流动性的液体状态变为不可以流通的疑胶情况的全过程,是生理止血方法的关键步骤。)和纤溶系统软件(凝血机制全过程中产生的游离脂肪酸,被溶解汽化的全过程,叫游离脂肪酸融解(通称纤溶)[32]。这说明晚断脐有利于脐带血流记到宝宝身体。自然,依然有很多适用早断脐者,或是最少不是延迟时间断脐,尤其是这些科学研究脐带血储存和种植的大夫或是学者。晚断脐后的脐带血干细胞量针对脐带血干细胞的捐助而言是远远不够的[33, 34]。因而,有些人提议脐带血干细胞采集者可以试着尽快钳夹以驱使更高的胚胎残留容积,虽然这类行为被以为在伦理道德上不适合的[35]。 也有别的基本原理适用早断脐,尤其是为了更好地脐带血库的发展趋势[12]。最先,脐带血干细胞的获得被觉得不仅仅是早产婴儿的生理学(过虑词),它对足月和身心健康新生婴儿也是十分关键的。足月孕妇分娩时,新生婴儿一般具备过多的血红蛋白浓度以赔偿氧气不足的临产前自然环境,接着在裸露于氧气含量高些的宫外孕自然环境以后,她们会历经短促的生理性贫血[12]。一切正常餐馆的宝宝从血细胞的当然欠缺中恢复正常并不艰难。因而,即便对取血开展初期钳夹,身心健康的宝宝也可以忍受血红蛋白浓度的非常大的降低,而并不会有有毒的药不良反应[12]。第二,一切正常的断脐時间可以为今后的移殖给予合理的血流量[12]。假如在身心健康足月宝宝中多余地延迟时间断脐,而且接着沒有搜集脐带血,脐带血中的珍贵干细胞美容将被丢掉。因而,适用早断脐者觉得应抵制一切消耗搜集干细胞美容机会的用意,特别是在欠缺直接证据说明脐带血储存与接着出现的缺铁性贫血间的相互关系的情形下[12]。第三,虽然晚断脐好像提升了红细胞压积和红细胞体积,但从临床医学看来,如Apgar得分(新生儿评分)和机械通气(机械通气是在麻醉机的幫助下,以保持气管顺畅、改进换气和氧合、避免人体氧气不足和二氧化碳堆积,为使人体有可能渡过基础疾病而致的吸气作用衰退,为医治基础疾病发挥特长。)规定层面,即便在早产儿组中也沒有显著性差别[22]。除此之外,晚断脐的临床医学益处,如降低脑颅毛细血管破裂和静脉注射依然是有争论的[22]。

脐带血干细胞中的干细胞

细胞组成 如上所述,现阶段有关断脐時间的争执早已十分猛烈,由于脐带血干细胞针对干细胞移植的使用价值,超过了婴儿贫血的简易难题。从胚胎向宝宝静脉注射不但给宝宝附加的血流量以平稳循环和丰富多彩铁存储,并且还给予至关重要的細胞成份,如脐带血中常含的干细胞。大家都了解,脐带血干细胞中的干细胞用以移殖看病,而且由于時间的发展趋势,脐带血衍化出的别的类型的体细胞在细胞治疗中也有着关键的使用价值。人们的脐带血干细胞做为多能干细胞的储藏库充分发挥着关键功效,可供应多种多样干细胞美容,如干细胞、内皮细胞磷酸激酶、间充质祖细胞和大多能/大多能系干细胞美容[36-38]。人们脐带血干细胞不但是原生态的,并且可以在较长一段时间内再次繁育新的细胞系[39-41]。身体之外,人们脐带血干细胞衍化的造血功能祖细胞(造血功能祖细胞:干细胞在一定的微环镜和一些因素的调控下,繁衍分裂为各种红细胞的祖细胞,称造血功能祖细胞)可以在带有多种多样细胞生长因子的长时间塑造物中繁衍,并具备更长的端粒(端粒,简易表述便是DNA尾端的那一段尤其编码序列)[42],与成体干细胞对比具备更好的集落产生工作能力[43]。因而,与成体骨髓干细胞对比,人们脐带血干细胞移植在更高环节上修复了造血功能祖细胞的寄主库[44]。即便一个脐带血干细胞样版也可以为短期内和长期性移殖给予充分的干细胞[45]。人们脐带血中一部分单个核细胞关键由网织红细胞和单核细胞构成[46]。与成年人血细胞(血细胞是除脊髓以外的血夜)对比,人们的脐带血干细胞网织红细胞更贴近B体细胞群(B体细胞最首要的功用是制造各种各样各种的抗原),但肯定T体细胞(CD3)总数较少,CD4 /CD8 比率较高[46,47]。除此之外,相较为CD34造血功能祖细胞身体之外分裂的B体细胞的特征而言,脐带血分裂出去的磷酸激酶B体细胞比不上成年人血夜化合物分裂环节高[48]。与其他来源的血夜对比,人们的脐带血干细胞具备大量的未熟T体细胞,但完善记忆细胞[47,49]和CD56细胞毒性T体细胞[49]的数目较少。除此之外,脐带血网织红细胞表述较少的前炎性细胞因子以及蛋白激酶,如白细胞介素(IL)-2、IL-6、IL-7、恶性肿瘤萎缩因素(TNF)-α、干扰素栓-γ[50,51]。比较之下,他们形成的IL-10(抗感染)水准高过成年人血夜中的网织红细胞[51,52],后面一种抑止树突状细胞CD86的表述。因而,这种反映好像抑止了T体细胞信号转导的免疫反应的逐渐[53]。除此之外,IL-10水准的上涨很有可能激话调节作用T体细胞,进而进一步抑止抗原体非特异体液免疫[54]。人脐带血单核细胞和树突状细胞都不完善。脐带血干细胞单核细胞对刺激性成年人单核细胞的肝脏细胞细胞生长因子(HGF)沒有反映 [55]。接着,他们不可以诱发尤其体细胞黏性分子结构,而尤其体细胞黏性分子结构是抗原呈递的重要[55]。脐带血干细胞单核细胞中人们白血球抗原体- dr的表述也较少。与成年人体细胞对比,白细胞计数抗原体-DR降低了他们体细胞的毒副作用[56]。除此之外,脐带血干细胞单核细胞难以分裂为完善树突细胞以激话孩子气T体细胞,即便应用非常的刺激细胞因子[57]。与成年人血夜不一样,脐带血中的树突细胞具备网织红细胞特点,更有可能在新生婴儿机构中移栽[58]。淋巴结样树突状细胞推动抗感染T-helper 2的组织细胞反映,它也许与孩子气T体细胞一起抑止免疫力和炎症现象[58,59]。有意思的是,脐带血干细胞[49]中大量的存有当然杀伤力体细胞(NK)。他们可以抑止T细胞的增殖、降低恶性肿瘤萎缩因素-造成[60]。比较之下,脐带血干细胞中纯天然破坏力体细胞的细胞毒性远小于成年人血[61]。人脐带血单个核细胞有2种不一样的亚群,即黏附体细胞和飘浮体细胞[62]。在飘浮体细胞群中检测到很多的干细胞美容抗原体和神经元细胞标识物,黏附体细胞群中具体带有表述造血功能抗原体的网织红细胞(~53%)。这种发觉不但说明在单核心脐带血干细胞体细胞中存有一个非造血功能亚群,并且也反映了其分裂为别的不一样谱系体细胞的潜力。间充质干细胞美容(Mesenchymal stem cells, MSCs)和类MSC祖细胞可以从孕妇羊水、胚胎和华顿氏胶中剥离获得[63]。间充质干细胞美容也被看到是脐带血干细胞体细胞的一小部分[63-65]。华顿氏胶和身体脐静脉内皮细胞息息相关,也展现出干细胞美容样的特点,很有可能具备与脐带血干细胞一样拥有强劲作用的造血细胞和间充质细胞群。现阶段尚搞不懂,除开脐带血干细胞中的哪些体细胞外,是不是也有别的体细胞很有可能在宝宝出生时进到宝宝身体,因而脐带血干细胞体细胞对宝宝的潜在性功效非常值得科学研究。因而,华顿氏胶和人们脐静脉内皮细胞的体细胞的普遍的运用并无法适用晚断脐,除非是弄搞清楚别的非脐带血干细胞体细胞和孩子中间的相互功效。来源于身体脐带血干细胞的间充质干细胞美容主要表现出了优异的延展性,包含能化成3种衍化体细胞的工作能力[65-67]。在指定的成长情况下,脐带血干细胞中的质间干细胞美容可分裂为成骨和软组织体细胞[68]。在神经系统分裂培养液中塑造后,脐带血间充质干细胞美容表述神经元细胞抗原体,如胶原纤维化学纤维酸碱性蛋白质(星型体细胞标识物)和TuJ-1(神经系统祖细胞标识物)及其体现神经系统分裂的正中间丝蛋白质,如波形蛋白,巢蛋白[69]脐带血干细胞美容的应用性 凭着脐带血干细胞美容的与众不同和未熟特点,自1972年初次脐带血移殖医治16岁男士亚急性中性粒细胞败血症[70]至今,人脐带血干细胞美容已完成地移殖医治各种病症小儿科基因遗传、血液学、病毒学、新陈代谢和肿瘤性病症[71-82]。他们身体之外分裂为非造血细胞的工作能力,已促进生物学家科学研究这种細胞的其它潜在性临床医学运用。如上所述,脐带血干细胞体细胞具备明显的多功能性、高繁衍工作能力、高自身升级工作能力、与众不同的T体细胞不原始性、递呈抗原体和发炎刺激性工作能力变弱、端粒长短提升、抗感染等特点。[12, 83]。最重要的是,对比于别的成年人干细胞美容,如脊髓间充质干细胞美容,脐红细胞的先天性不成熟,包含其免疫力孩子气,很有可能做到这种体细胞在造血细胞和细胞肝脏移植层面的最好是功效。这种不成熟的特点有利于降低免疫排斥反映的发病率,包含移植物抗寄主病(GvHD)和/或抑止试管移植后有危害的炎症现象,即便他们来源于自体肾源。因而,这种特点可以容许相对性灵便的肾源-蛋白激酶配对规定,进而减少医治分阶段[83]。罗查等[84]发觉,当二种来源于均来源于白细胞计数抗原体同样的兄妹时接纳人脐带血移殖的儿童GvHD病发几率显著小于接纳干细胞移植的儿童。除此之外,即便不是相应的,白细胞计数抗原体不搭配的脐带血干细胞蛋白激酶也比白细胞计数抗原体相符合的脊髓蛋白激酶具备更低的GvHD发病率[85]。试验细胞模型中,在脑缺血脑中风后静脉血管滴注人脐带血干细胞干细胞美容早已留意到催人奋进的結果。大家观测到梗塞容积的降低和膝关节损伤的修复,这在于给药時间和体细胞使用量。脐带血干细胞美容对脑中风病患者的神经系统维护功效好像与诱发神经系统营养成分细胞生长因子[90]和/或毛细血管转化成因素[91]的施放和发炎的降低[92]相关,而不是与体细胞更换相关。脐带血干细胞干细胞美容也已被用来医治先天代谢病。比如,Sanfilippo综合症B型(粘膜含糖量症III型B)是一种性染色体隐性遗传病,其得病缘故是欠缺α- N-乙酰氨基葡萄糖水酶。病患者一切正常生长发育2年之后发生临床医学症状,发生渐行性脑和全身上下多人体器官畸型。愈来愈多的信息适用脐带血干细胞体细胞在这类破坏性病症的身体外移殖的发展潜力[93-95]。除此之外,在新生婴儿围生期氧气不足缺血颅脑损伤的新生儿大白鼠实体模型中,腹膜后内移殖人脐带血单个核细胞导致这种体细胞划入损伤的人的大脑,并造成缓解脑性瘫痪的神经科学危害[96]。

出世时第一次干细胞移殖

人们的第一次且肯定的干细胞移植产生在宝宝出生时,那时候胚胎和胎儿脐带逐渐收拢并向新生婴儿泵血。当两居室的血夜均衡后,胎儿脐带终止脉动饮料,随后血液终止。这类情况产生在大部分胚胎哺乳类动物中,除开人们,大部分种群容许这类静脉注射当然终止。 人们根据早断脐来控制从宝宝到生命的衔接,这代表着自然界的第一次干细胞移植被减缩,进而丧失了宝宝附加的干细胞美容。不管怎样,干细胞美容在包含神经中枢系统软件、呼吸道、内分泌系统、血液系统、人体免疫系统和中枢神经系统以内的很多人体器官系統的生长发育和完善中激发着关键功效[97-102]。新生婴儿很多病症的得病缘故与生长迟缓及不成熟相关。除此之外,每一个人体器官系统软件在婴儿出生后仍再次生长发育。因而,在宝宝出生时,婴儿被人为因素遗失干细胞美容很有可能会危害她们日后的生长发育,并使其易患慢性肺病、哮喘病、糖尿病患者、癫痫病、脑瘫儿、帕金森、感柒和恶性肿瘤等病症。尤其是早产儿婴儿出生后脐带血干细胞体细胞的迁移蔓延可能是特别关键的,由于怀孕24 - 31周出生的婴儿的脐带血干细胞中,初始造血功能祖细胞和长期性塑造运行体细胞的含量高过足月出生的婴儿的脐带血干细胞[103]。因而,这种干细胞美容是不是可以迁移到新生婴儿尤其是早产婴儿,断脐的时间重要。而晚断脐是一种生理学、安全性和便宜的方式,可以防止遗失这般关键的干细胞美容,要是没有捐助脐带血干细胞的准备得话。根据晚断脐可防止干细胞美容遗失,并很有可能潜在地降低与很多新生儿疾病有关的患病几率和过世率(表1)。表1新生婴儿常见病与人体器官系统软件不成熟相关。有直接证据说明,对前五种所列病症晚断脐是有利的。只有一个论文参考文献谈及。剩余的五种病症都还没最后证实是由于晚断脐来变化的。特别注意的是,目前为止,对心房周边白质变软症的有不错的诊治功效仅在羊实验中展现出去。混乱(参照) 呼吸窘迫综合症[13] 早产儿贫血[22] 脑颅毛细血管破裂[24] 脓毒症[104] 脑颅周边白质变软症[105]待确认 漫性肺病 早产婴儿睡眠呼吸暂停 早产婴儿视网膜病变 坏死性小肠结肠炎 动脉导管未闭未闭必须考量的一个关键难题是晚断脐的长久危害。文中【微信号码:yaodaoyaofang】并不了解在小动物或人们的身上有一切跟踪到成人的科学研究。在人们有关的分析中,最多的科研時间为6-7个月,而且依然可以观测到一些有关铁情况和肌张力障碍的益处[27][106]。尤为重要的是要做好长期性随诊科学研究,以确认已获知的晚断脐的益处是不是长期性的,或是不是有可能发生别的益处。结果 学者和临床医生对有关断脐时时刻刻的选用和脐带血干细胞的收集方式的结果欠缺的共识。殊不知,晚断脐和干细胞美容库并没有相互之间抵触的个人行为。如同一些【微信号码:yaodaoyaofang】所提议的[8],比较之下,最重要的是如何防止有價值的体细胞在分娩全过程中的损害。 最先,晚断脐应当强烈推荐给这些只有得到比较有限保健医疗和假设缺乏营养的群体,及其一些由于经济发展或别的基本原理而选用不储存脐带血的群体。针对早产婴儿而言,断脐時间也需要适度延迟,便于给予充分的血流量和干细胞美容,但这些必须马上恢复的宝宝以外。针对身体健康的脐带血干细胞献血者,应防止多余的、过多的延迟时间断脐。到迄今为止,针对新生婴儿在围生期一切正常生长需要的最好是干细胞美容总数都还没达成一致。即便如此,假如在常规時间开展断脐,它不可能防碍确保新生婴儿身心健康生长发育所需充足数目的体细胞的转移。除此之外,即便是一切正常時间的断脐也足够事先预防产后贫血。足月身心健康宝宝,可以为干细胞美容库搜集充足的血流量。殊不知,假如脐带血干细胞在常规時间或延迟时间断脐時间造成比较有限数目的单核细胞,那麼做为干细胞美容的来源于,从脐带血干细胞和其他组织(如胎儿脐带机构和胚胎)中分离出来、储存和增加干细胞美容的升级方式将降低对脐带血干细胞的依靠。未来,在晚断脐后残余的胚胎血流量很有可能造成充足数目的干细胞美容,这种干细胞美容可以被增加并储存起来用以移殖。这类作法将一方面让宝宝获得晚断脐的生理学益处,另一方面依然造成干细胞美容供未来移殖应用。总而言之,在哺乳类动物出世时,干细胞美容的自体移植根据胎儿脐带当然产生。晚断脐可提升对宝宝的干细胞美容供货,进而获得先天干细胞移植的治疗效果,从眼下的益处看,可防止一些新生婴儿的常见病,从长久的益处看,可以事先预防与年纪相关的病症。因而,根据现在的参考文献,大家提议在全部身心健康的宝宝生产过程中,应明显考虑到晚断脐,且在早产儿宝宝生产过程中,无别的应急严重危害早产婴儿性命的情形下,实际操作晚断脐。论文参考文献:1. Peltonen T.Placentaltransfusion – advantage an disadvantage. Eur J Pediatr. 1981; 137: 141–6.2. Mercer JS. Current bestevidence: a review of the literature on umbilical cord clamping. J MidwiferyWomens Health. 2001; 46: 402–14.3. McClauslandAM, Holmes F, Schumann WR. Management of cord and placental blood and its effectupon the newborn. Part II. West J Surg Obstet Gynecol. 1950; 58: 591–608.4. Mercer JS,Nelson CC, Skovgaard RL. Umbilical cord clamping: beliefs and practices of Americannurse-midwives. J Midwifery Womens Health. 2000; 45: 58–66. 5. McDonaldSJ, Middleton P. Effect of timing of umbilical cord clamping of term infantson matenal and neonatal outcomes. Cochrane Database Syst Rev. 2008: CD004074.6. Rabe H,Reynolds G, Diaz-Rossello J. Early versusdelayed umbilical cord clamping in preterm infants. Cochrane Database Syst Rev.2004: CD003248.7. Capasso L,Raimondi F, Capasso A, et al. Early cordclamping protects at-risk neonates from polycythemia. Biol Neonate. 2003; 83:197–200.8. Diaz-RosselloJL. Early umbilicalcord clamping and cord-blood banking. Lancet. 2006; 368: 840.9. Hutchon DJ.Commercial cordblood banking: immediate cord clamping is not safe. BMJ. 2006; 333: 919.10. Levy T,Blickstein I. Timing of cord clamping revisited. J Perinat Med. 2006;34: 293–7.11. Glader BE. Red blood cellaplasias in children. Pediatr Ann. 1990; 19: 168–9, 73–6.12. SchiffmanJD. The benefits ofcord blood collection. Neoreviews. 2006; 7: e564–6.13. Usher RH,Saigal S, O’Neil A, et al. Estimation of red blood cell volume in premature infantswith and without respiratory distress syndrome. Biol Neonate. 1975; 26: 241–8.14. Yao AC,Wist A, Lind J. The blood volume of the newborn infant delivered bycaesarean section. Acta Paediatr Scand. 1967; 56: 585–92.15. Yao AC,Lind J. Effect of gravity on placental transfusion. Lancet. 1969;2: 505–8.16. Yao AC,Hirvensalo M, Lind J. Placental transfusion-rate and uterine contraction. Lancet.1968; 1: 380–3.17. AladangadyN, McHugh S, Aitchison TC, et al. Infants’ bloodvolume in a controlled trial of placental transfusion at preterm delivery.Pediatrics. 2006; 117: 93–8.18. LinderkampO. Placentaltransfusion: determinants and effects. Clin Perinatol. 1982; 9: 559–92.19. Nelle M,Zilow EP, Bastert G, et al. Effect ofLeboyer childbirth on cardiac output, cerebral and gastrointestinal blood flow velocitiesin full-term neonates. Am J Perinatol. 1995; 12: 212–6.20. Papile LA,Rudolph AM, Heymann MA. Autoregulation of cerebral blood flow in the pretermfetal lamb. Pediatr Res. 1985; 19: 159–61.21. Mercer J,Erickson-Owens D. Delayed cord clamping increases infants’ iron stores.Lancet. 2006; 367: 1956–8.22. Strauss RG,Mock DM, Johnson KJ, et al. A randomized clinicaltrial comparing immediate versus delayed clamping of the umbilical cord inpreterm infants: shortterm clinical and laboratory endpoints. Transfusion.2008; 48: 658–65.23. BaenzigerO, Stolkin F, Keel M, et al. The influence ofthe timing of cord clamping on postnatal cerebral oxygenation in preterm neonates:a randomized, controlled trial. Pediatrics. 2007; 119: 455–9.24. Rabe H,Reynolds G, Diaz-Rossello J. A systematicreview and meta-analysis of a brief delay in clamping the umbilical cord ofpreterm infants. Neonatology. 2008; 93: 138–44.25. Hutton EK,Hassan ES. Late vs early clamping of the umbilical cord in full-termneonates: systematic review and metaanalysis of controlled trials. Jama. 2007; 297:1241–52.26. CerianiCernadas JM, Carroli G, Pellegrini L, et al. The effect oftiming of cord clamping on neonatal venous hematocrit values and clinicaloutcome at term: a randomized, controlled trial. Pediatrics. 2006; 117: e779–86.27. ChaparroCM, Neufeld LM, Tena Alavez G, et al. Effect of timingof umbilical cord clamping on iron status in Mexican infants: a randomisedcontrolled trial. Lancet. 2006; 367: 1997–2004. 28. Emhamed MO,van Rheenen P, Brabin BJ. The early effects of delayed cord clamping in terminfants born to Libyan mothers. Trop Doct. 2004; 34: 218–22.29. Gupta R,Ramji S. Effect of delayed cord clamping on iron stores in infantsborn to anemic mothers: a randomized controlled trial. Indian Pediatr. 2002;39: 130–5.30. Grajeda R,Perez-Escamilla R, Dewey KG. Delayed clampingof the umbilical cord improves hematologic status of Guatemalan infants at 2 moof age. Am J Clin Nutr. 1997; 65: 425–31.31. van RheenenP, Brabin BJ. Late umbilical cord-clamping as an intervention for reducingiron deficiency anaemia in term infants in developing and industrialised countries:a systematic review. Ann Trop Paediatr. 2004; 24: 3–16.32. Bonnar J,McNicol GP, Douglas AS. The blood coagulation and fibrinolytic systems in thenewborn and the mother at birth. J Obstet Gynaecol Br Commonw. 1971; 78: 355–60.33. Yao AC,Moinian M, Lind J. Distribution of blood between infant and placenta after birth.Lancet. 1969; 2: 871–3.34. Wall DA. Issues in thequality of umbilical cord blood stem cells for transplantation: challenges incord blood banking quality management. Transfusion. 2005; 45: 826–8.35. Diaz-RosselloJL. Internationalperspectives: cord clamping for stem cell donation: medical facts and ethics.Neoreviews. 2006; 7: e557–63.36. Erices A,Conget P, Minguell JJ. Mesenchymal progenitor cells in human umbilical cordblood. Br J Haematol. 2000; 109: 235–42.37. Berger MJ,Adams SD, Tigges BM, et al. Differentiationof umbilical cord bloodderived multilineage progenitor cells into respiratoryepithelial cells. Cytotherapy. 2006; 8: 480–7.38. Kim JW, KimSY, Park SY, et al. Mesenchymal progenitor cells in the human umbilical cord.Ann Hematol. 2004; 83: 733–8.39. Todaro AM,Pafumi C, Pernicone G, et al. Haematopoieticprogenitors from umbilical cord blood. Blood Purif. 2000; 18: 144–7. 40. Nayar B,Raju GM, Deka D. Hematopoietic stem/progenitor cell harvesting fromumbilical cord blood. Int J Gynaecol Obstet. 2002; 79: 31–2.41. BroxmeyerHE, Hangoc G, Cooper S, et al. Growthcharacteristics and expansion of human umbilical cord blood and estimation ofits potential for transplantation in adults. Proc Natl Acad Sci USA. 1992; 89:4109–13.42. Vaziri H,Dragowska W, Allsopp RC, et al. Evidence for amitotic clock in 494 © 2010 The Authors Journal compilation © 2010 Foundationfor Cellular and Molecular Medicine/Blackwell Publishing Ltd humanhematopoietic stem cells: loss of telomeric DNA with age. Proc Natl Acad SciUSA. 1994; 91: 9857–60.43. Nakahata T,Ogawa M. Hemopoietic colony-forming cells in umbilical cord bloodwith extensive capability to generate mono- and multipotential hemopoieticprogenitors. J Clin Invest. 1982; 70: 1324–8.44. Frassoni F,Podesta M, Maccario R, et al. Cord bloodtransplantation provides better reconstitution of hematopoietic reservoir comparedwith bone marrow transplantation. Blood. 2003; 102: 1138–41.45. Sirchia G,Rebulla P. Placental/umbilical cord blood transplantation.Haematologica. 1999; 84: 738–47.46. Pranke P,Failace RR, Allebrandt WF, et al. Hematologic andimmunophenotypic characterization of human umbilical cord blood. Acta Haematol.2001; 105: 71–6.47. Harris DT,Schumacher MJ, Locascio J, et al. Phenotypic andfunctional immaturity of human umbilical cord blood T lymphocytes. Proc NatlAcad Sci USA. 1992; 89: 10006–10.48. Hirose Y,Kiyoi H, Itoh K, et al. B-cell precursors differentiated from cord blood CD34_ cells are moreimmature than those derived from granulocyte colonystimulating factor-mobilizedperipheral blood CD34_ cells. Immunology. 2001; 104: 410–7.49. D’Arena G,Musto P, Cascavilla N, et al. Flow cytometriccharacterization of human umbilical cord blood lymphocytes: immunophenotypicfeatures. Haematologica. 1998; 83: 197–203.50. Zola H,Fusco M, Macardle PJ, et al. Expression ofcytokine receptors by human cord blood lymphocytes: comparison with adult bloodlymphocytes. Pediatr Res. 1995; 38: 397–403.51. Gluckman E,Rocha V. History of the clinical use of umbilical cord blood hematopoieticcells. Cytotherapy. 2005; 7: 219–27.52. RainsfordE, Reen DJ. Interleukin 10, produced in abundance by human newborn T cells,may be the regulator of increased tolerance associated with cord blood stem celltransplantation. Br J Haematol. 2002; 116: 702–9.53. Buelens C,Willems F, Delvaux A, et al. Interleukin-10differentially regulates B7–1 (CD80) and B7–2 (CD86) expression on humanperipheral blood dendritic cells. Eur J Immunol. 1995; 25: 2668–72.54. Asseman C,Powrie F. Interleukin 10 is a growth factor for a population ofregulatory T cells. Gut. 1998; 42: 157–8.55. Jiang Q,Azuma E, Hirayama M, et al. Functionalimmaturity of cord blood monocytes as detected by impaired response tohepatocyte growth factor. Pediatr Int. 2001; 43: 334–9.56. Theilgaard-MonchK, Raaschou-Jensen K, Palm H, et al. Flow cytometricassessment of lymphocyte subsets, lymphoid progenitors, and hematopoietic stemcells in allogeneic stem cell grafts. Bone Marrow Transplant. 2001; 28: 1073–82.57. Liu E, TuW, Law HK, et al. Decreased yield, phenotypic expression and function ofimmature monocyte-derived dendritic cells in cord blood. Br J Haematol. 2001; 113:240–6.58. Willing AE,Eve DJ, Sanberg PR. Umbilical cord blood transfusions for prevention ofprogressive brain injury and induction of neural recovery: an immunological perspective.Regen Med. 2007; 2: 457–64.59. Arpinati M,Green CL, Heimfeld S, et al. Granulocyte-colonystim孩子出生时,你是不是抹杀了他/她的第一次干细胞移植?晚断脐,ulating factor mobilizes T helper 2-inducing dendritic cells. Blood. 2000;95: 2484–90.60. El MarsafyS, Dosquet C, Coudert MC, et al. Study of cordblood natural killer cell suppressor activity. Eur J Haematol. 2001; 66: 215–20.61. Dalle JH,Menezes J, Wagner E, et al. Characterizationof cord blood natural killer cells: implications for transplantation andneonatal infections. Pediatr Res. 2005; 57: 649–55.62. Chen N,Hudson JE, Walczak P, et al. Human umbilicalcord blood progenitors: the potential of these hematopoietic cells to becomeneural. Stem Cells. 2005; 23: 1560–70.63. Ding DC,Shyu WC, Chiang MF, et al. Enhancement of neuroplasticity through upregulation ofbeta1-integrin in human umbilical cord-derived stromal cell implanted strokemodel. Neurobiol Dis. 2007; 27: 339–53.64. Goodwin HS,Bicknese AR, Chien SN, et al. Multilineagedifferentiation activity by cells isolated from umbilical cord blood: expressionof bone, fat, and neural markers. Biol Blood Marrow Transplant. 2001; 7: 581–8.65. Yang SE, HaCW, Jung M, et al. Mesenchymal stem/progenitor cells developed in culturesfrom UC blood. Cytotherapy. 2004; 6: 476–86.66. Jeong JA,Gang EJ, Hong SH, et al. Rapid neural differentiation of human cord blood-derivedmesenchymal stem cells. Neuroreport. 2004; 15: 1731–4. 67. Lee KD, KuoTK, Whang-Peng J, et al. In vitro hepatic differentiation of human mesenchymal stemcells. Hepatology. 2004; 40: 1275–84. 68. KosmachevaSM, Volk MV, Yeustratenka TA, et al. In vitro growthof human umbilical blood mesenchymal stem cells and their differentiation intochondrocytes and osteoblasts. Bull Exp Biol Med. 2008; 145: 141–5.69. El-BadriNS, Hakki A, Saporta S, et al. Cord bloodmesenchymal stem cells: potential use in neurological disorders. Stem CellsDev. 2006; 15: 497–506.70. Ende M,Ende N. Hematopoietic transplantation by means of fetal (cord)blood. Virginia Med Mon. 1972; 99: 276–80. 71. Gluckman E,Broxmeyer HA, Auerbach AD, et al. Hematopoieticreconstitution in a patient with Fanconi’s anemia by means of umbilical-cordblood from an HLA-identical sibling. N Engl J Med. 1989; 321: 1174–8.72. Escolar ML,Poe MD, Provenzale JM, et al. Transplantationof umbilical-cord blood in babies with infantile Krabbe’s disease. N Engl JMed. 2005; 352: 2069–81.73. Hall JG,Martin PL, Wood S, et al. Unrelated umbilical cord blood transplantation for aninfant with beta-thalassemia major. J Pediatr Hematol Oncol. 2004; 26: 382–5.74. Kelly P,Kurtzberg J, Vichinsky E, et al. Umbilical cordblood stem cells: application for the treatment of patients with hemoglobinopathies.J Pediatr. 1997; 130: 695–703.75. Krivit W,Shapiro EG, Peters C, et al. Hematopoieticstem-cell transplantation in globoid-cell leukodystrophy. N Engl J Med. 1998;338: 1119–27.76. LocatelliF, Rocha V, Reed W, et al. Related umbilical cord blood transplantation in patientswith thalassemia and sickle cell disease. Blood. 2003; 101: 2137–43.77. Myers LA,Hershfield MS, Neale WT, et al. Purinenucleoside phosphorylase deficiency (PNP-def) presenting with lymphopenia anddevelopmental delay: successful correction with umbilical cord bloodtransplantation. J Pediatr. 2004; 145: 710–2.78. Staba SL,Escolar ML, Poe M, et al. Cord-blood transplants from unrelated donors in patientswith Hurler’s syndrome. N Engl J Med. 2004; 350: 1960–9.79. FruchtmanSM, Hurlet A, Dracker R, et al. The successfultreatment of severe aplastic anemia with autologous cord blood transplantation.Biol Blood Marrow Transplant. 2004; 10: 741–2. J. Cell. Mol. Med. Vol 14, No 3,2010 © 2010 The Authors 495 Journal compilation © 2010 Foundation for Cellularand Molecular Medicine/Blackwell Publishing Ltd80. Rocha V,Cornish J, Sievers EL, et al. Comparison ofoutcomes of unrelated bone marrow and umbilical cord blood transplants inchildren with acute leukemia. Blood. 2001; 97: 2962–71.81. Rocha V,Labopin M, Sanz G, et al. Transplants of umbilical-cord blood or bone marrow fromunrelated donors in adults with acute leukemia. N Engl J Med. 2004; 351: 2276–85.82. Wall DA,Carter SL, Kernan NA, et al. Busulfan/melphalan/antithymocyteglobulin followed by unrelated donor cord blood transplantation for treatmentof infant leukemia and leukemia in young children: the Cord BloodTransplantation study (COBLT) experience. Biol Blood Marrow Transplant. 2005; 11:637–46.83. Newcomb JD,Sanberg PR, Klasko SK, et al. Umbilical cordblood research: current and future perspectives. Cell Transplant. 2007; 16: 151–8.84. Rocha V,Wagner JE Jr, Sobocinski KA, et al. Graft-versus-hostdisease in children who have received a cord-blood or bone marrow transplantfrom an HLA-identical sibling. Eurocord and International Bone MarrowTransplant Registry Working Committee on Alternative Donor a孩子出生时,你是不是抹杀了他/她的第一次干细胞移植?晚断脐,nd Stem CellSources. N Engl J Med. 2000; 342: 1846–54.85. Rocha V,Cornish J, Sievers EL, et al. Comparison ofoutcomes of unrelated bone marrow and umbilical cord blood transplants inchildren with acute leukemia. Blood. 2001; 97: 2962–71.86. Vendrame M,Cassady J, Newcomb J, et al. Infusion ofhuman umbilical cord blood cells in a rat model of stroke dosedependently rescuesbehavioral deficits and reduces infarct volume. Stroke. 2004; 35: 2390–5.87. Newcomb JD,Ajmo CT Jr, Sanberg CD, et al. Timing of cordblood treatment after experimental stroke determines therapeutic efficacy. CellTransplant. 2006; 15: 213–23.88. Newman MB,Willing AE, Manresa JJ, et al. Stroke-inducedmigration of human umbilical cord blood cells: time course and cytokines. StemCells Dev. 2005; 14: 576–86.89. Park DH,Borlongan CV, Willing AE, et al. Human umbilicalcord blood cell grafts for brain ischemia. Cell Transplant. 2009; 18: 985–98.90. Newman MB,Willing AE, Manresa JJ, et al. Cytokinesproduced by cultured human umbilical cord blood (HUCB) cells: implications forbrain repair. Exp Neurol. 2006; 199: 201–8.91. Taguchi A,Soma T, Tanaka H, et al. Administration of CD34_ cells afterstroke enhances neurogenesis via angiogenesis in a mouse model. J Clin Invest.2004; 114: 330–8.92. Vendrame M,Gemma C, de Mesquita D, et al. Anti-inflammatoryeffects of human cord blood cells in a rat model of stroke. Stem Cells Dev.2005; 14: 595–604.93. Garbuzova-DavisS, Gografe SJ, Sanberg CD, et al. Maternaltransplantation of human umbilical cord blood cells provides prenatal therapyin Sanfilippo type B mouse model. FASEB J. 2006; 20: 485–7.94. Garbuzova-DavisS, Willing AE, Desjarlais T, et al. Transplantationof human umbilical cord blood cells benefits an animal model of Sanfilipposyndrome type B. Stem Cells Dev. 2005; 14: 384–94.95. Garbuzova-DavisS, Xie Y, Zayko O, et al. Human umbilical cord blood cells in treatment ofSanfilippo syndrome type B. Cell Transplant. 2009; 18; 214–5.96. Meier C,Middelanis J, Wasielewski B, et al. Spastic paresisafter perinatal brain damage in rats is reduced by human cord blood mononuclearcells. Pediatr Res. 2006; 59: 244–9.97. Merkle FT,Alvarez-Buylla A. Neural stem cells in mammalian development. Curr OpinCell Biol. 2006; 18: 704–9.98. Borok Z, LiC, Liebler J, et al. Developmental pathways and specification ofintrapulmonary stem cells. Pediatr Res. 2006; 59: 84R–93R.99. Garry DJ,Olson EN. A common progenitor at the heart of development. Cell.2006; 127: 1101–4.100. Dieterlen-LievreF. Emergence of haematopoieticstem cells during development. C R Biol. 2007; 330: 504–9.101. BhandoolaA, von Boehmer H, Petrie HT, et al. Commitment anddevelopmental potential of extrathymic and intrathymic T cell precursors:plenty to choose from. Immunity. 2007; 26: 678–89.102. MurtaughLC. Pancreas andbeta-cell development: from the actual to the possible. Development. 2007; 134:427–38.103. HanelineLS, Marshall KP, Clapp DW. The highest concentration of primitive hematopoieticprogenitor cells in cord blood is found in extremely premature infants. PediatrRes. 1996; 39: 820–5.104. Mercer JS,Vohr BR, McGrath MM, et al. Delayed cordclamping in very preterm infants reduces the incidence of intraventricular hemorrhageand late-onset sepsis: a randomized, controlled trial. Pediatrics. 2006; 117:1235–42.105. Marumo G,Kozuma S, Ohyu J, et al. Generation of periventricular leukomalacia by repeatedumbilical cord occlusion in near-term fetal sheep and its possible pathogeneticalmechanisms. Biol Neonate. 2001; 79: 39–45.106. Mercer JS,Vohr BR, Erickson-Owens DA, et al. Seven-monthdevelopmental outcomes of very low birth weight infants enrolled in arandomized controlled trial of delayed versus immediate cord clamping. JPerinatol. 2010; 30: 11–6.以往經典脐带血保存或是不储存?看了这篇文你也就不犹豫了遗失的传统化——大家再次教會小孩“适度原则”的生活观念如何正确对待并看待儿童的手淫个人行为?兴趣爱好,是儿童认知能力的学习动机马法兰盘(ALPHALAN)Alphalan Melphalan Tablets 2mg 馬法蘭片 马法兰 药道全世界,助推性命。印度的全世界海淘药店:。

  • 微信咨询
  • 这是我的微信扫一扫
  • weinxin
  • WhatsApp 沟通
  • 手机扫一扫二维码
  • weinxin

发表评论

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen: